24 research outputs found

    Data-guide for brain deformation in surgery: comparison of linear and nonlinear models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pre-operative imaging devices generate high-resolution images but intra-operative imaging devices generate low-resolution images. To use high-resolution pre-operative images during surgery, they must be deformed to reflect intra-operative geometry of brain.</p> <p>Methods</p> <p>We employ biomechanical models, guided by low resolution intra-operative images, to determine location of normal and abnormal regions of brain after craniotomy. We also employ finite element methods to discretize and solve the related differential equations. In the process, pre- and intra-operative images are utilized and corresponding points are determined and used to optimize parameters of the models. This paper develops a nonlinear model and compares it with linear models while our previous work developed and compared linear models (mechanical and elastic).</p> <p>Results</p> <p>Nonlinear model is evaluated and compared with linear models using simulated and real data. Partial validation using intra-operative images indicates that the proposed models reduce the localization error caused by brain deformation after craniotomy.</p> <p>Conclusions</p> <p>The proposed nonlinear model generates more accurate results than the linear models. When guided by limited intra-operative surface data, it predicts deformation of entire brain. Its execution time is however considerably more than those of linear models.</p

    MAC-Oriented Programmable Terahertz PHY via Graphene-based Yagi-Uda Antennas

    Get PDF
    Graphene is enabling a plethora of applications in a wide range of fields due to its unique electrical, mechanical, and optical properties. In the realm of wireless communications, graphene shows great promise for the implementation of miniaturized and tunable antennas in the terahertz band. These unique advantages open the door to new reconfigurable antenna structures which, in turn, enable novel communication protocols at different levels of the stack. This paper explores both aspects by, first, presenting a terahertz Yagi-Uda-like antenna concept that achieves reconfiguration both in frequency and beam direction simultaneously. Then, a programmable antenna controller design is proposed to expose the reconfigurability to the PHY and MAC layers, and several examples of its applicability are given. The performance and cost of the proposed scheme is evaluated through full-wave simulations and comparative analysis, demonstrating reconfigurability at nanosecond granularity with overheads below 0.02 mm2^{2} and 0.2 mW.Comment: Accepted for presentation in IEEE WCNC '1

    Evaluation of Prognostic Factors of Methanol Poisoning in Patients Referred to Shahid Rajaei Hospital in Karaj

    Get PDF
    Background: Methanol poisoning is a life-threatening condition that requires accurate prognosis and treatment. This study aims to evaluate the predictive value of laboratory and clinical variables in methanol poisoning.Methods: This was an observational retrospective study performed on patients with methanol poisoning. Variables were determined based on the literature review, and patient data were extracted from the patient’s file. The data was analyzed by SPSS software.Results: There were significant differences between survived group and the dead group in GCS, heart rate, PH and HCO3, serum potassium, serum creatinine, and blood sugar levels, neurological symptoms, requiring intubation, and hemodialysis. Significant differences were not observed in the number of hemodialysis sessions, respiratory rate, age, gastrointestinal symptoms, and PCO2 levels between survived and non-survived groups.Conclusion: In our study, mortality was significantly associated with low GCS, high heart rate, low PH and HCO3, high potassium, creatinine, blood sugar levels, neurological symptoms, intubation, and hemodialysis. Despite other studies in this study, there was no association between the number of hemodialysis sessions, respiratory rate, age, gastrointestinal symptoms, and PCO2 levels with mortality

    Reprogrammable graphene-based metasurface mirror with adaptive focal point for THz imaging

    Get PDF
    Recent emergence of metasurfaces has enabled the development of ultra-thin flat optical components through different wavefront shaping techniques at various wavelengths. However, due to the non-adaptive nature of conventional metasurfaces, the focal point of the resulting optics needs to be fixed at the design stage, thus severely limiting its reconfigurability and applicability. In this paper, we aim to overcome such constraint by presenting a flat reflective component that can be reprogrammed to focus terahertz waves at a desired point in the near-field region. To this end, we first propose a graphene-based unit cell with phase reconfigurability, and then employ the coding metasurface approach to draw the phase profile required to set the focus on the target point. Our results show that the proposed component can operate close to the diffraction limit with high focusing range and low focusing error. We also demonstrate that, through appropriate automation, the reprogrammability of the metamirror could be leveraged to develop compact terahertz scanning and imaging systems, as well as novel reconfigurable components for terahertz wireless communications.Peer ReviewedPostprint (published version

    Terahertz Dielectric Resonator Antenna Coupled to Graphene Plasmonic Dipole

    Full text link
    This paper presents an efficient approach for exciting a dielectric resonator antenna (DRA) in the terahertz frequencies by means of a graphene plasmonic dipole. Design and analysis are performed in two steps. First, the propagation properties of hybrid plasmonic onedimensional and two-dimensional structures are obtained by using transfer matrix theory and the finite-element method. The coupling amount between the plasmonic graphene mode and the dielectric wave mode is explored based on different parameters. These results, together with DRA and plasmonic antenna theory, are then used to design a DRA antenna that supports the TEy112TE_{y}^{112} mode at 2.4 THz and achieves a gain (IEEE) of up to 7 dBi and a radiation efficiency of up 70%. This gain is 6.5 dB higher than that of the graphene dipole alone and achieved with a moderate area overhead, demonstrating the value of the proposed structure.Comment: Accepted for presentation at EuCAP 201

    Green's Function Analysis of Electromagnetic Wave Propagation in Photonic Crystal Devices Using Complex Images Technique

    No full text

    Far field superlensing inside biological media through a nanorod lens using spatiotemporal information

    No full text
    Far field superlensing of light has generated great attention in optical focusing and imaging applications. The capability of metamaterials to convert evanescent waves to propagative waves has led to numerous proposals in this regard. The common drawback of these approaches is their poor performance inside strongly scattering media like biological samples. Here, we use a metamaterial structure made out of aluminum nanorods in conjunction with time-reversal technique to exploit all temporal and spatial degrees of freedom for superlensing. Using broadband optics, we numerically show that this structure can perform focusing inside biological tissues with a resolution of λ/10. Moreover, for the imaging scheme we propose the entropy criterion for the image reconstruction step to reduce the number of required optical transducers. We propose an imaging scenario to reconstruct the spreading pattern of a diffusive material inside a tissue. In this way super-resolution images are obtained
    corecore